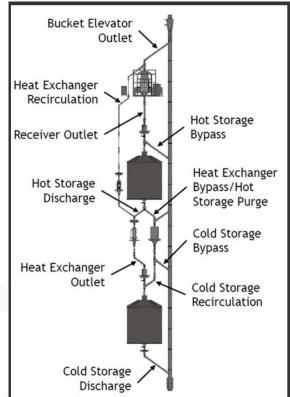
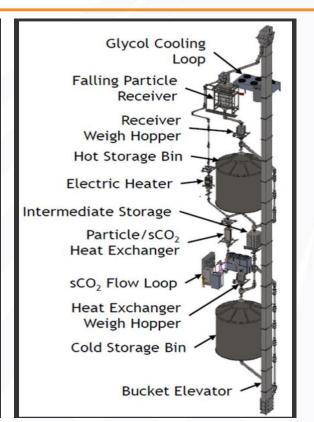


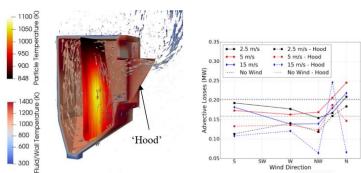
2020 SETO PEER REVIEW

CSP Systems: Gen 3 CSP


Shane E. Powers, Technology Manager Solar Energy Technologies Office


CSP Systems: Gen 3 Particle Pathway

Challenges


- Receiver thermal efficiency
- Particle-to-sCO2
 HXer design
- Mass flow control

Gen 3 Particle Pathway R&D Efforts

Receiver Efficiency and Losses

Receiver Design and Modelling

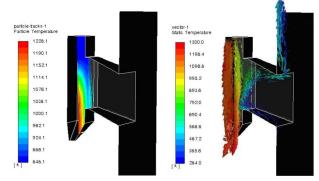


Figure 5. Steady-state particle temperatures (left) and air velocity vectors along the plane of symmetry colored by temperature in K (right) [20].

Particle – sCO2 Heat Exchanger

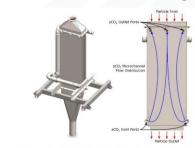


Figure 12. Illustration of the 1 MW_t G3P3 shell-and-plate moving packed-bed heat exchanger (left) and cut plane indicating the particle flow channel and integral sCO₂ ports (right)

Thermal Energy Storage (Particle Silo)

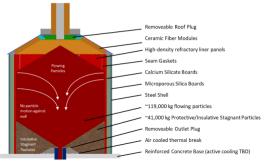


Figure 8. G3P3 Thermal Energy Storage Bin design overview

Gen 3 Particle Pathway R&D: Facilities

NSTTF Facility

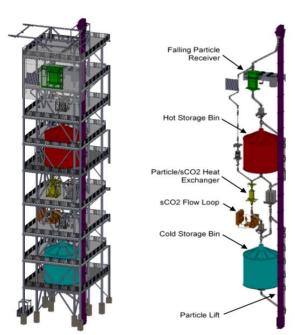
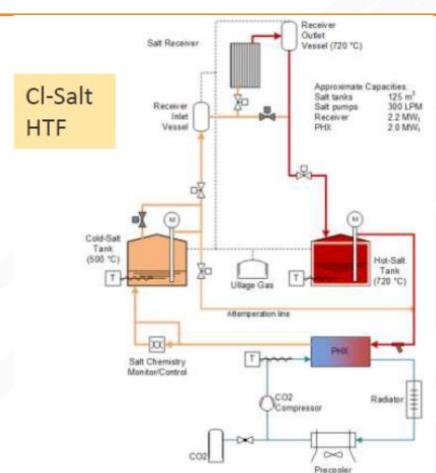
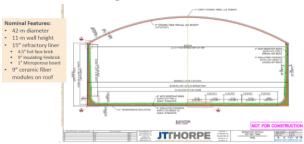


Figure 19. Illustration of vertically integrated G3P3 system showing supporting tower structure (left) and with the tower structure omitted (right) to display the particle

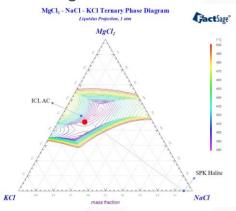
King Saud University Facility


Figure 132. Photograph of the particle-heating receiver test facility at King Saud University.

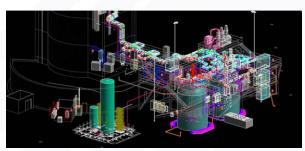
CSP Systems: Gen3 Liquid Pathway R&D


Challenges

- Material compatibility
- Corrosion mitigation
- Chemical monitoring and control



Gen 3 Liquid Pathway R&D Efforts


Salt Tank Design

Salt Corrosion Mitigation and Control

System Integration

Other Key Systems and Components

- Salt-sCO2 Heat Exchanger
- Piping and Valves
- Ullage Gas System
- Salt Melter
- Freeze Protection
- Scrubber / Vapor Removal

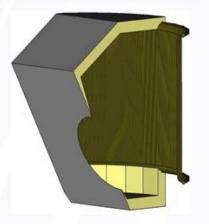
Liquid Pathway R&D Efforts: Sodium Receiver

Benefits of Sodium

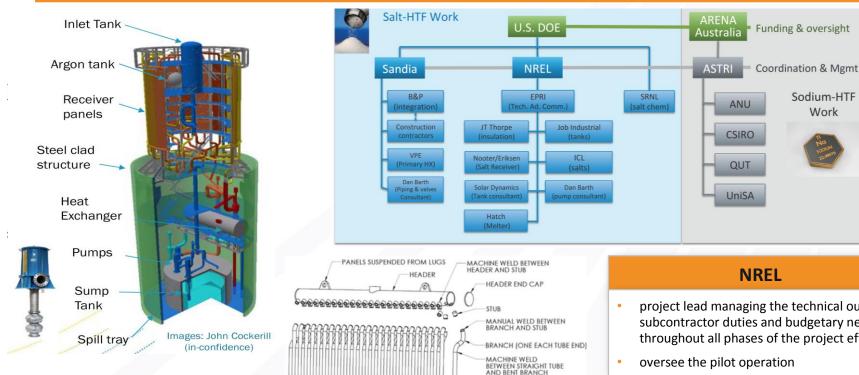
- large heat transfer coefficient (α) , efficiently transfers thermal energy to HTF resulting in a high performance receiver
- greater flexibility in receiver and field design
- stability at high T_{op} Na stable up to its boiling point (880°C)
- lower LCOE (Na: \$71.4/MWh, salt: \$79.5/MWh

Flexibility of Sodium

- With Na, the solar sub-system retains flexibility
- Na allows for a modular plant design enabling Na flow in networks, access to lower cost towers and the switch to more efficient optics
- higher fluxes and better heat transfer attributes enable alternative, advanced receiver design options



Receiver Down Select

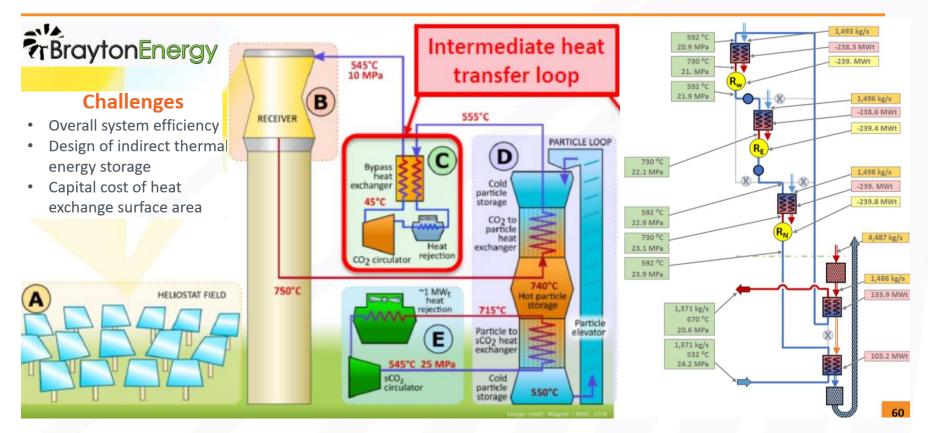

- two full scale 500MW_{th} Na receivers developed by ASTRI
- cylindrical receiver applicable to central and tower systems
- cavity receiver applicable to tower systems
- cylindrical receiver chosen as costs are understood with higher certainty, operation is simpler and design is low risk

Cavity Receiver Design Assumptions

- 30-yr lifetime modeled for minimum creep-fatigue aggression
- flux limits evaluated for temperature and mass flow
- high-performance coating (90% absorptivity, 91% emissivity)

Liquid Pathway R&D: Sodium Receiver Integration

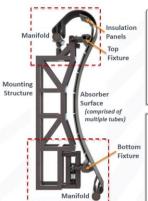
TUBE (SINGLE LENGTH)


TUBE SUPPORTS EVERY 4m TO ALLOW DOWNWARD

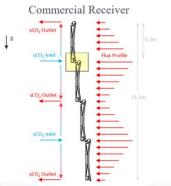
- project lead managing the technical output, subcontractor duties and budgetary needs throughout all phases of the project effort
- oversee the pilot operation
- stability at high T_{op} Na stable up to its boiling point (880°C)

Sodium-HTF

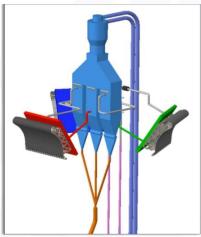
Work


CSP Systems: Gen3 Gas Pathway

Gen 3 Gas Pathway R&D Efforts


Receiver Design

Each modular absorber panel is factory built Each receiver is comprised of multiple panels

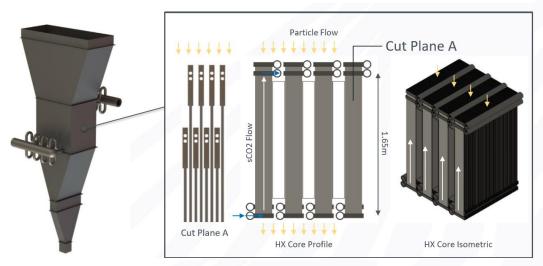


Tower and Solar Field Design

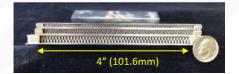
3/20 – 12pm

Internally Finned Structure

Edisun Heliostats

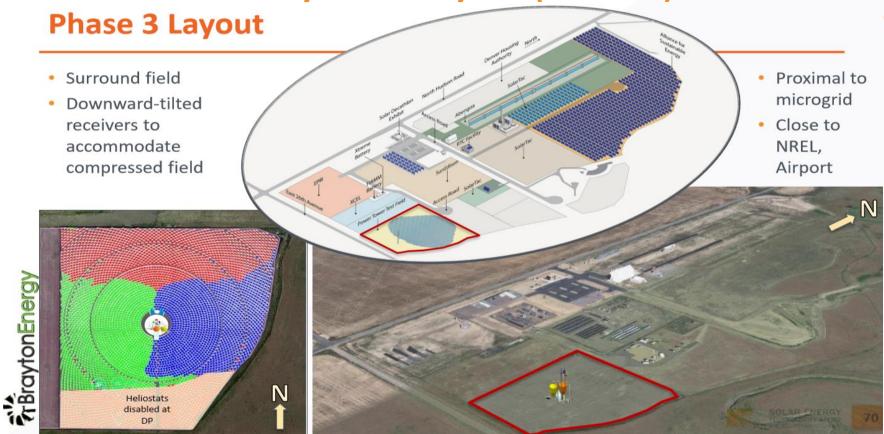


Edisun Heliostat


U.S. DEPARTMENT OF Office of ENERGY EFFICIENCY
& RENEWABLE ENERGY
SOLAR ENERGY TECHNOLOGIES OFFICE

Gen 3 Gas Pathway R&D Efforts

Heat Exchanger



Particle Thermal Energy Storage (Sand)

1	MATERIAL	COMPOSITION	MATERIAL PROPERTIES			PRICE
			DENSITY (kg/m3)	SPECIFIC HEAT (J/ka°C)	MELTING T (°C)	RANGE (\$/Ton)
	Silica sand	SiO ₂	2,610	1,000	1,710	30 – 80
	Alumina	Brown fused Al ₂ O ₃ (BFA)	3,960	1,200	1,500	100 – 1,000
	Coal ash	SiO ₂ , Al ₂ O ₃ , + minerals	2,100	720 at 25°C	1,183–1,640	-40 – 20
	Calcined flint clay	SiO ₂ , Al ₂ O ₃ , TiO ₂ , Fe ₂ O ₂	2,600	1,050	2,000	350 – 400
	CARBO proppants	75% Al ₂ O ₃ , 11% SiO ₂ , 9% Fe ₂ O _{3,} 3% TiO ₂	3,300	1,150		1,000 – 2,000

Gen3 Gas Pathway – Site Layout (Phase 3)

Gen3 Program

- Gen3 FOA Schedule
 - Phase 1 (Research)
 - Phase 2 (Engineering)
 - Downselection Start Date
 - Phase 3 (Construction/Testing)
- Technical Advisory Committee (TAC)
- Industry Review

- FY 2019
- FY 2020
- Oct 1, 2020
- FY 2021 2023

Downselect Criteria

- Technology Risk
- Project Management
- Technoeconomic Analysis (LCOE)
- Phase 3 De-Risking Activities
- Scale Up Risk

14

